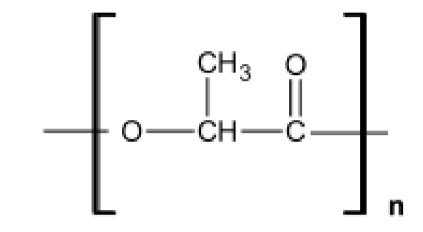
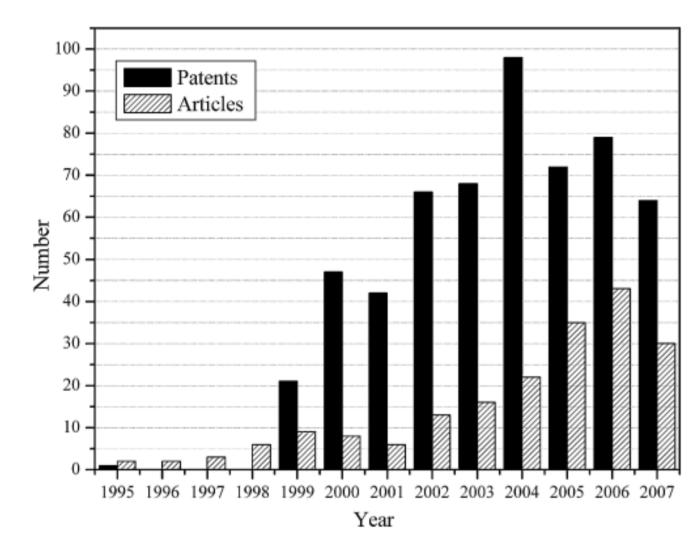
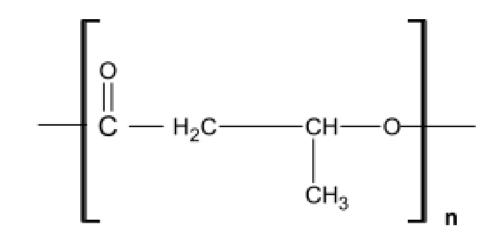
CAPABILITIES AND LIMITATIONS OF BIOPLASTICS APPLICATION IN WOOD TECHNOLOGY

Grzegorz Kowaluk, Anita Wronka, Piotr Borysiuk, Radosław Auriga

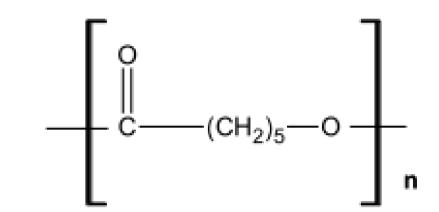

WARSAW UNIVERSITY OF LIFE SCIENCES - SGGW, FACULTY OF WOOD TECHNOLOGY NOWOURSYNOWSKA STR. 159, 02-776 WARSAW, POLAND grzegorz_kowaluk@sggw.pl

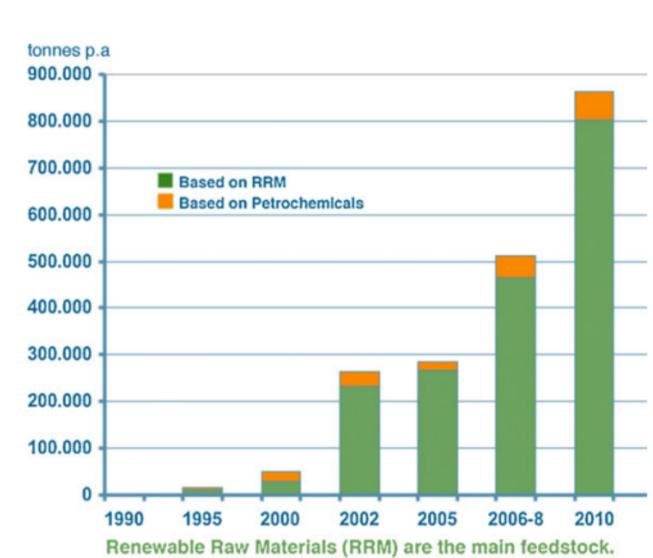



PLA – poly(lactic acid), polylactide – produced from renewable raw materials (like corn), has about 40% of the entire biopolymer market, rigid and brittle, transparent, glass temp. about 57°C, melting temp. 170-180°C, good mechanical properties, low extension when breaks, easy water absorption

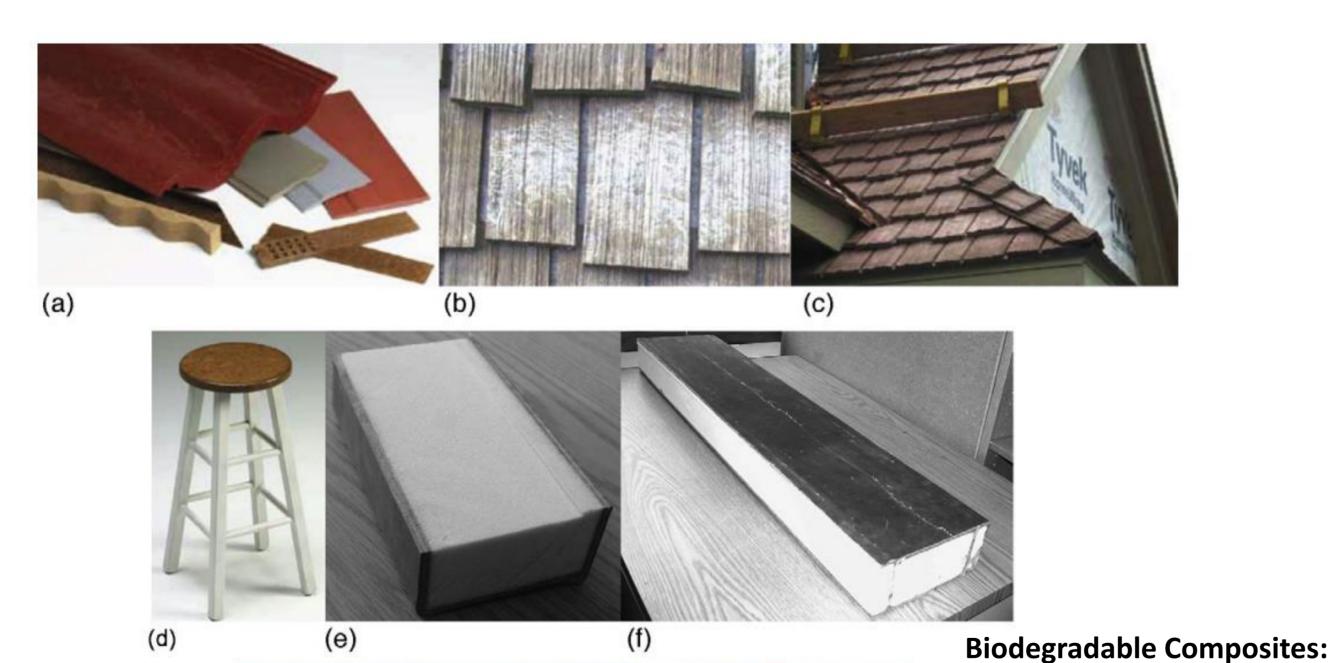
PHB – polyhydroxybutyrate – bio-derived and biodegradable, rigid and brittle, melting temp. is just 10°C lower than thermal degradation temperature

PCL - polycaprolactone, fossil-based, biodegradable polyester with a low melting point of around 60°C and a glass transition temperature of about -60°C, elastic





Material	Time to degrade in the environment	
Cotton	1–5 months	
PCL-g-MAH/starch	2 months	
PCL-starch	2 months	
PCL-g-MAH/starch	2 months	
WG/PVA	1 month	
WG/SCB	1 month	
Conventional copy paper	1 month	
PHB-PHB/starch	1 month	
WG	1 month	
WG/PVA	1 month	
WG/SCB	1 month	
WG/WG/SCB film	1 month	
Wool stocking	1 year	
Bamboo stick	1–3 years	
Chewing gum	5 years	
Painted wood	13 years	
Plastic	450 years	
Glasses and tyres	Uncertain time	


PCL, Poly(caprolactone); MAH, maleic anhydride; WG, waste gelatin; PVA, poly(vinyl alcohol); SCB, sugar cane bagasse; g, grafting; *p. 281–92; **p. 51–6.

Property	Type of biopolymer			
	PLA	L-PLA	DL-PLA	
Density (kg/m³)	1210	1240	1250	
T.S. (MPa)	21	15.5	27.6	
Y.M. (GPa)	0.35	2.7	1	
Elongation (%)	2.5	3	2	
T_{g} (°C)	45	55	50	
T _m (°C)	150	170	am	

Property					
	PGA	PCL	РНВ	Starch	
Density (kg/m³)	1500	1110	1180		
T.S. (MPa)	60	20.7	40	5.0	
Y.M. (GPa)	6	0.21	3.5	0.125	
Elongation (%)	1.5	300	5	31	
$T_{\rm g}$ (°C)	35	-60	5		
$T_{\rm m}$ (°C)	220	58	168		
	* * 4				

(a-c) building components
(d) furniture
(e) beam of chicken—soybea
(

(h)

- (e) beam of chicken-soybean oil resin based composite(f) beam of paper-soybean oil resin
 - (f) beam of paper—soybean oil resin based composite
 - (g) cosmetic packing
 - (h) house wares

Non-brittle fracture on impact Same performance for lower weight Stronger (25–30%) for the same weight Low cost—less than the base resin Fully and easily recyclable Reduced molding cycle time-up to 30% Non-abrasive to machinery Natural appearance Low thermal expansion coefficient Good sound abatement capability Better energy management characteristics More shatter resistant Low mold shrinkage Easily colored High flex modulus—up to 5× base resin High tensile modulus—up to $5 \times$ base resin High notched impact—up to $2 \times$ base resin Lower processing energy requirements Meets minimum recycle content requirements

(g)

